src.solutions.bert_finetune_solution

Module Contents

Classes

BertFinetuningPredictor

Base class for any competition solution.

Functions

main()

class src.solutions.bert_finetune_solution.BertFinetuningPredictor(model_name='microsoft/deberta-v3-large', num_classes=6, lr=2e-05, batch_size=8, num_workers=8, max_length=512, weight_decay=0.01, accelerator='gpu', max_epochs=5, accumulate_grad_batches=4, precision=16, gradient_clip_val=1000, train_size=0.8, num_cross_val_splits=5, num_frozen_layers=20)

Bases: src.solutions.base_solution.BaseSolution

Base class for any competition solution.

fit(X: pandas.DataFrame, y: pandas.DataFrame, **kwargs)
predict(X: pandas.DataFrame) pandas.DataFrame
save(directory: Union[str, pathlib.Path]) None

Stores model to the directory.

The directory must be empty.

load(directory: Union[str, pathlib.Path]) None

Loads model from the directory.

Initializes the solution correctly even if the config dict wasn’t specified in the constructor.

The directory should not contain files other than those produced by the save method of the same class.

src.solutions.bert_finetune_solution.main()